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ABSTRACT

--'In this paper, the author proposes two methods of estimation of the

regression coefficients when the errors are not distributed identically

and independently and are of nonzero mean. The estimates proved in this

paper are shown to be strongly consistent and mean square consistent.

Key Words and Phrases: Correlated errors, heterogeneous errors,

regression coefficients, strongly consistent
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1. INTRODUCTION

Suppose we have a system of linear equations

Y = Xi B l + "'" + Xi B p ', i = 1, 2, ..., m Cl)

where Yi, Xi., i 1, 2, ... , n, J = 1, 2, ..., p are known while

l , ...1 B p are the unknowns. There are many ways to define a solution

for the determination of a' = (8.1, ... % p). One well known way is

the so-called Chebyshev approximation, which seeks to minimize

Qn(8) = max 1Y -l<i<n

where Xi = (X. , ... , X. )'. Such a solution, denoted by !, can be

computed by the method of linear programing (see [2] and [6]).

Now if Yl' Y2' "'" are observed with random errors, then, instead

of (1), we have the linear regression model

Y. = X!B + ei , i = 1, 2, ..., n (2)

where e1 , ., en are random errors. Usually, in (2), it is assumed that

the expectations of errors are zero and have finite second moment with

-orthogonality or asymptotic independence. To solve this problem, one

can use the famous least square estimation (LSE) method. In the literature,

there are a lot of papers concerning with LSE and many important results

are obtained (see [1], [31, [5]). But the unbiasedness and consistency

of LSE strongly depend on the assumption that the expectations of errors

are zero, and this assumption is not realistic sometimes. The means of

errors of measurements may be different. Similarly, it is not always

realistic to assume that the errors are distributed independently. In

such situations, it is of interest to obtain consistent estimates of B.

In this paper, we propose two methods of obtaining consistent estimates

of B.
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Both of these methods are motivated by the so-called Chebshev approximation.

The first method is to use the measure

Qn () = max (Y. - XB) - min CY - X!)l<i<n 1~l l<i<n 1 ~..

A

which is never negative. So we can find the solution Sn which minimizes

Qn(s). We refer to a as MD estimate (that is, the estimate based on

Maximum Difference between residuals).

The second method is to use the measure

S(8) -- max Yi - XtB
n-" l <i<n "

Denote by B the value of B which minimizes Q (8). We shall calln n. !nr
MA estimator (that is, the estimator based on the Maximum Absolute value

of residuals).

In Section 2, we shall prove the strong consistency of 8n whereas

in Section 3, we shall prove its mean square consistency. In Section 4,

we will prove that estimates of endpoints of error support based on the
A

.-. residuals, with respect to an' are strong by consistent, and establish
rn
the strong consistency of the estimate of second moment of errors, based

on s n, when the error sequence is stationary and ergodic. In Section 5,

we establish the strong consistency of fn and its mean square consistency

is given in Section 6. In Section 7, we shall prove the consistency of

estimates of the largest value of endpoints and that of the second moment

of errors when the error sequence is stationary and ergodic. Here we

emphasize the fact that we do not use independence (even in the asymptotic

case) of the error sequence in proving our results.

For example, let Cn, n = 1, 2, ... be i.i.d. random variables with

common uniform distribution over the interval [0,1). Define the errors as

,° .

. " . , ,. . . . #.w'. ,, , . . . . . . , w , . - - -' . . . . . . . "- ,
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e2k+i e k = 1 2 i = 1 2 2k

Such an error sequence satisfies all conditions in our theorems but it

is not asymptotically independent.

Of course, if the errors have a common mean, our model will turn out

to be the usual linear regression model. In this paper, we do not assume

the errors have common mean. For example-, let en be independent r.v.

distributed on (0,1) and with density Pn(X) > e > 0. Also, assume that

E( n ) are not equal. Define
e k~i =- C k + e i = is 29 ... 9 , k = 1, 2,

In this case, LS method does not work but our method still works.

'U
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2. STRONG CONSISTENCY OF n-n

In this section we shall prove the following theorem:

Theorem 1. Suppose that e. has a support included in the bounded in-

terval [a l , a2], and for any subsequence {ei. : j = 1, 2, .. } of {ei}

we have

im e . = e i  :aa.s. (3)

Also, suppose that {X.} is bounded, and for any nonzero p-vector d,

lim xn'd does not exist. Then

A

lim a = B, a.s. (4)
n- A

Proof. Several preliminary facts are in order.

1. Define a function

g() = ma'x - lim 'x.'. ., n -- n

on RP , then g(a) is continuous on RP , and g(c) > 0 when # 0.

The second conclusion follows directly from the assumption of the

theorem, and the first is an easy consequence of the boundedness of {x.
% -i

Denote by B the surface of the unit sphere in RP i.e. B = {a: Holl = 1}.

Because B is compact, g is continuous, and g(c) > 0 for a 0, we have

c = inf g(a) > 0. (5)
* eB

2. Define B and c as above. Then we can find a positive integer m

and a subset D = {-Il' ""' -} of B such that for any a e B, there exists

. D with the property~I

r"
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sup )I 2, ... } < c/4 (6)

The proof is obvious. If 1xjj1 < M, j = 1, 2, ... , then we need only

to find m large enough so that there exists a - net of B consisting of
8M

m points. This- - net is chosen as D.

For every a.i 6 D, we can find out two subsequences {Xil} and
j=1

{x i2j} of {x n } swch that
..iJj=l -

rn a'x i  = TV1I c'.x lim 'x r li xI -I lj -1-n' -i-i2j " Z-x-

Denote the values of y and e corresponding to Xirj by Yirj' eirj' r =1, 2,

i e. if xir j =xk, then Yir = Yk' eirj = ek- Put

E~i ={lime ia == a1}

Ei 97 i ei 1j =2' Ei 2  -,-- i2j a

m

E n (E i ln E i2). (7)

3. P(E) = 1.
In fact, since P(Eil) = P(E = 1, i = 1, ... , m by (3), we get the

result.

Employ the symbol w to represent a real number sequence (c, c2 , o..),

aI < c1 < a2 , i = 1, 2, .... The event E determined by (7) can be viewed

as a subset E of the w-space i.e. E = {(el, e2, ... ) 6 El.

4. For any C > 0, t > C, a. e D, put d= + tai, then for any

W e E, there exists Ni(w) such that

max (yk(W) - xkdt) - min (yk(w) - xd t ) _a 2 -a1 +-tc (8)
l<k<n - I <k<n

.............................. ........................................................
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when n > Ni().

The proof is as follows: For simplicity of notation we shall use

Yk' ek to express yk( ) and ek(w). Then

Yk - -t = + ek - -X'- + tti) = ek - tx'k.. (9)

Take n > 0 whose value will be given later. Since 71i'T e. = a2 and
-lj

urn cXi.j = limcIX,1" we can find j,= j(nw) so that
j-*w -

elJl a2 - (10)

ix. <lim 01!x +rn. (11)
I-ilj-1-n

Take N l Nin,W) large enough so that when n > N ilwe have

Tilj e I , -.- i

il
Then by (9)-(iI), when n > Nil we have

max k 1 - txi ',. > a t(lim ix + n). (12)

1 <k<n -- lj I  lj 2 1-n

Similarly, we can Drove that there exists N = N i2 (n,w) such that when

n > N. we have

min(Yk < ' < al + n t(lTm7 xn -an) (13)
l k-k t - n n ) "

I~knn

Put N N Ni(n,) maxN , (n,w). N (n,w)}. Then using (12), (13) and

noticing the definition of c in (5), we get

,... . , ... .... . ._.. . ... . x . ..Y ....... . . .. . . .., " -,- '". .-.. ., . . .. . . _ - _, . - ., I. - . .
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max -x'd') - min - - )
1<k<n lk 1<k<n

a2 - n - t(lim &tx + n) - {a, + n - t(Tim acxn - n)
-- * f n-+4.c

> a2 - a1 - 2(t + l)n + tc. (14)

ce ct cc

Now specify n =  Since __2 6e-+ for t > e, it follows

from (14) that for t > e

max Xd ) - min -k
1<k<n -k l<k<n

ct 2
> a2 " - 2(t + 1) ct + tc=a 2 - a1 +-2tC.

This proves the assertion.

Now turn to the proof of theorem 1. Fix w a E and e > 0, and again

use yi, ei, Ni etc. to express yi( ). ei (w). Ni (w). Put N = N(w) =

max Ni(w). Suppose that Z e Rp satisfies lyZ - a(j > e, then Z can be
l<i<m 1

written as Z = B + tc, t > e, e B. By 2, we can choose .i e D so that

(6) is true. Remember that dt = B + tai , we have

YR -e YK kX'B.. + t-a) :Yk "kdt + t(-a -ai))

: Yk X'd - tx(~ - -i) -> Yk - X - tc/4

and

-y ' + tc/4.Yk " _V < Yk - tc.

From these inequalities and (8), we have

............................... . I I ....... ....
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p
max (Yk-x)- min (Yk - xk e)

lkn - - l<k<n -

> max (y x'd) - min (Yk - xdt) " tc/2l<k<n l<k<n ....

> a2 - aI + tc/6

for n > N. On the other hand, we know that

max (yk- Xk6) - min Yk- x'6)
l<k<n k " <k<n y

max ek - min e < a - a
l<k<n l<k<n k-2 V

So we have Qn(Z) > Qn( ) for n > N and lIZ - B11 > e. According to

the definition of S , we have 1 - < e when n > N. Since e> 0 is. -n -n .-

" arbitrary, this proves that lim n = 6 when w i E. The proof of Theorem 1
-n

is concluded in view of 3.

Let us mention two important examples of this theorem.

1. {eiI is a m-dependent and identically distributed sequence and

the support of ei is bounded, where m is a positive integer.

Let a1, a2 express the infimum and supremum of the support of e

respectively.

(I) m = 1.

It is obvious that lim e : a2, lime i  : a1 for any subsequence

S{ei .} of {ei}.

(II) m > 1.

Take arbitrarily a subsequence {ei } of {ei}. We can further choose

an iid. subsequence {eI.I from fei.}. By () we have lim ei = a2, a.s.

So a2 > ei. > i = a2, a.s. In a similar way we prove the other
j-). j 1-

assertion of (3).

• --. . . ,. . .. .-. .,................-... ......-. . . . .. . .. ,..... ......-... .- ,...,..
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2. Let {ei} be a stationary sequence, the support of eI being bounded

(a,, a2 denote the left and right endpoint of the support) and suppose

that the following condition (weak dependency) holds:

limrsup{Ip(A)p(Bn)-p(ABn): Aea(ei),Bn6(ei+n,ei+n+l,..)}l = 0 (15)
n-

for any fixed i, where a(ei , ej, ...) express the a-field generated by

ei , ej,....

For this case we again take an arbitrary subsequence {e. I of {ei,

3
* for fixed e> 0, put E< = {e < a2 - €1" It needs only to verify that

"I

P(E E Ev+ .oo) = 0, for any v. (16)
v v+lv2

Use Ci to denote the quantity under the limit sign of (15). Fix r > v and
in

take n large enough to make C < 1 1/2r
. Notice that ir + n <1 r+nl.

rl r+l
Further, choose n2 large enough to satisfy C. < 1/2r  . In general,r+n n2

after determining nm, we choose n 1 large enough so that C nm

1rtm Thnr+n 1+...+n m m+1< 1/2r m  Then

P(Ev Ev+l E ..- )

<P(E r  Er+nln2+n3
< 1/2r + P(En r+n +n +n Ernln2)

r1  r1 + 2  r1 1+ 2+n3 . PEr
S1/2 r + 1/2r+l + P(E +n E r+n +n +n ..)P(Er)P(E r+n

2 1n 2+3 1

< (1/2r + 12
r+ 1 + ...) + P(E r)P(E r+n1 )...P(E r+nl+..+nm)

for any nature number m. Since P(Er) : P(Er+) = < 1, letting m

in the above expression we get
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*P(E vF -l + 1 /2r-

Thus (16) is true. (16) shows that

T7i'm e i = a 2, a.s.

Similarly, we can prove

lint e i = al, a.s.

j- C-
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3. MEAN SQUARE CONSISTENCY OF a

In this section we shall prove the following theorem:

Theorem 2. Under the assumption of theorem 1 we have

lim E(8 - 2) = 0.

Proof. Define h(a) = lim 7 max a 'x - mix i
n- "l<i<n" l<i<n- B u x

bounded, h(ei) is finite everywhere and further, it is easily seen from

the assumption of theorem 1 that h(a) > 0 when a $ 0, and h(a) is contin-

uous everywhere on RP . So the infremum of h(a) on the surface of unit

sphere B is greater than zero : c inf{h(a): a a B} > 0. Find on B a

finite subset D = {I.l' " } with the following property. For any

a e B, there exists i e {l, ..., q) such that

sup{I(a - a )'x I: j=1, 2, ... } < c/4. (17)

Now we prove the existence of N such that

max x'a - minx'a > c/4, for every a e B when n > N.

l<i<n 1- ' l<i<n I-

In fact, by the definition of c, we can find out N such that

max x'a. - min x ai > 3c/4, i = 1, ..., q
l<k<n -  l<k<n

when n > N. For any a e B choose ai such that (17) holds, then we have

max x'a - min x a > ( max Xk i c/4) - ( min ~k i
.<k<n -  l<k<n- --l<k<n ~  l<k<nk

= max x ai - min X'i - c/2 > 3c/4 - c/2 = c/4
l<k<n ~  l<k<n-

when n > N. Now put t = 2(a2 - al)/C. If Z f RP ancllt - B11 > t, then Z

can be written as e = + t, a B, t > t. Thus for n > N, we get



Qn(V - max (Yk ) - min (Yk )
1<k<n 1<k<n

= max (ek - txla) - min (ek - txc)
1<k<n 1<k<n k

>t( max x' - min xci) -( max ek - min ek)
1<k<nk 1<k<n" 1<k<n 1<k<n

> tc/4 - (a2 - a,) >2(a2 - a,) > Qn()

This shows that fa N' -N+I' "".} are uniformly bounded. Since

P(lim an = 8) = 1 by theorem 1, the assertion of theorem 2 follows from

the dominant convergent theorem.

"4

.4.
• 4 

,
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4. ESTIMATION OF THE ENDPOINTS OF THE

SUPPORT AND THE SECOND MOMENT

Define
am = cicn 1 A a~n- 1 f(Yi
a (yi - 1 ' aZn = xi-

a <l<n I~iA

Theorem 3. Under the assumption of theorem 1, aln , a2n are strong
A A

consistent estimates of a,, a2 respectively. (So a2n - aln is a strong

consistent estimate of a2 - a,.)

Proof. Take a2n for instance. Because lim max e > Mm en, by (3),
n-'- l<i<n n+-

we have P(lim max ei = a2 ) o 1. Now
nI l<i<n

max (yi " xn) = max (y1 - x!s - xi( - ))
1<i<n 1<i<n "- ". -

= max (yi - x 8) + n = max ei + n
1<i<n - l<i<n

where IJ nI - sup Ix.ill Ilen1 -all.. Because lim an= a.s. in view of theorem

1 and {xi} is bounded, we derive that lim Jn = 0, a.s. Combining this with

P(lim max ei = a2) = 1, we get lir a2, o
n+- k<i<n

Now suppose that el , e2 , ... is a strictly stationary ergodic

sequence. As an estimate of Ee2  we use S n =1/ i

Theorem 4. Suppose that {ei} is a strictly stationary ergadic sequence.

Assume that the conditions of theorem 1 are true. Then

lim Sn = EeI, a.s° (18)

Proof. We have

g- *~ L* . "
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n 2 n

I x' A 2 2 n 2
= .IEx (sn s)] eixi. ,- )+ - e

j 1 +J2 + 13- (19)

In view of ergodicity of the sequence [4], we gain

lim J3 = Ee2 , a.s. (20)
n-3 1'

*" Write M = supjjxill, then M < -. Hence

i

2 < M2]8n 0, a.s. (21)

2 An

Finally, )iexJ((n - s)1t < (la21 + 1all)MII 8rn - 811, so we obtain

1l 0, a.s. (22)

By (19)-(22), (18) follows.

* V. ' "*..**** *' ' -. " " i * - - - * - - -
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5. STRONG CONSISTENCY OF 8n

In this section we shall prove the following theorem:

Theorem 5. Suppose that each ei has a support included in the bound-

ed intervals [ai , a2] and for any subsequence'{ei j = 1, 2, ...) of {ei

we have

T'im eij = a2, lim e1i = a,, a.s. (23)

Also suppose that {xi) is bounded, and for any nonzero p-vector d

T1n x'd 5. 0.

Then

lim ! n :, a.s. (24)

Proof. Without losing generality, we suppose that jal < a2,

othersise consider the model "Yn = X'n(-.) - en*

Several preliminary facts are in order.

(I) Define a function

g(a) = Ti' IN

on RP. Then g(a) is continuous on RP, and .(a) > 0 when a $0.

The second conclusion follows directly from the assumption of the

theorem, and the first is an easy consequence of the boundedness of (xi).

Denote by B the surface of the unit sphere in R
p , i.e.

B = {1: fla 1 = l} . Because B is compact, " is continuous, and g(a) > 0

for a t 0, we have

C = 'nf g(a) > 0. (25)

Ole

. . .
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*(II) Define B and E as above, then we can find a positive integer

m and a subset D = {W-l "".-m of B such that for any a e B, there

exists . 6 with the property

sup{(a - W 1)xjI: j = 1, 2, ...1 < Z/3. (26)

The proof has been given in §2.

For every e e I, we can find out a subsequence {xij)= 1 of {x n

such that

lrnim . ij = urm n, i = 1, 2, ... , m.
J-*D

Denote the values of y and e corresponding to x by yij' eij' i.e.

ifi
if xi k' then Yii = k' j = ek. Put

Fi = {2ime. . a2
m

F= n Fi "  (27)
i=l

(III) P(F) = 1.
In fact, since P(Fi) = 1, i = 1, ...,I by (23), we get the result.

Employ the symbol w to represent a real number sequence (El, c2, "")'

a <,ci < a2, i = 1, 2, .... The event F determined by (27) can be

. viewed as a subset F of the w-space, i.e. F = {(eI , e2, ... ) e F1.

(IV) For any e> 0, t > e, D D, put dt = - tO-i. Then for any

w ,, F, there exists Ni(-w) such that

nx - . a + (28)

l<k<n

when n > N ( ) .

, -' 'G ,: ',' ':;;-;- :,::.:-;-"-: ,? ;; ::'-: ?;-;- . -:..,-.:..; :- :.?./.- > ;.?;.- .-. :;.i-.,>:, ... ,-,:'4" ; . .- ? *-,
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Proof. For simplicity of notation, we shall use Yk' ek to express

yk(W) and ek(W), when

Yk x- dtx +e -xe k ta i ) =ek + tx' i  (29)

Take n = min{a2 , -- . Since Tim = a2 and lim aixij

Ti n , we can find k = k(ri,cw) such that

ejk > a2 - (30)

1Xik ' c - (31)

Take N. = Ni(n,c) large enough so that when n > N. we have

Xik * {Xl, !n

Then by (29)-(31), when n ' Ni we have

max lyk - xOtl > leik + txikjiil
l<k<n

> a2 - + t(E- T) = a2 + tE- (l + t)n

2a2 + 2tc

since Et c- for t > e.

This proves the assertion.

Now turn to the proof of Theorem 5. Fix w e F and e > 0, and again

use yi' ei, Nil etc. to express yi(G), ei (-), Ni (-). Put N = N(W) =

max N.( ). Suppose that Z e RP satisfies Ilt - e e, then Z can be
l<i<n 

-

written as Z = B - tc, t > e, o e B. By (II) we can choose .i e so

that (26) is true. Remember that dt = - tcti , we have



L'IT

k" Z = Yk " x{( - ta) = Yk " x (dt + t(.i- a))
Yk " x[- " ( - i

= k ~K~t -tXk (- TO

Then

" - " 5j1 - ~k "-/3.

- From this inequality and (28). we have

max 1yk - > max YK txc/3
l<k<n__ > -t<k<n k

-a 2 +tc -tc/3 = a2 +ltE

for n > N. On the other hand, we know that

max lyk - x10 = max leki < a2 .
l<k<n l<k<n

So we have Qn(C) > Qn(B) for n > N and ljZ- > e. According to the

definitions of in , we have 111n- < - when n > N. Since e > 0 is

arbitrary, this proves that lim n = when w e F. The proof of Theorem 5

is completed in view of (Il1). 1

-. ~ . *. . . .,4

.- ', ' , , " ,. .. >- ,.- .. .... , .'," ..-.4."" 4.-.- ." . "." . ',.4'''*.,-''*,- ' " " " ---- " -i,.", ¢ "
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6. MEAN SQUARE CONSISTENCY OF -n

In this section we shall prove the following theorem:

Theorem 6. Under the assumption of theorem 5, we have

Iim E(li nT - 1I2) = 0.

Proof. Without losing generality, we suppose that jall < a2 .

Define l(i) : im max a'xi. Because {xi } is bounded, "F(a) is
n-). 1 <i<n ~  -

finite everywhere and further it is easily seen from the assumption

of theorem 5 that W(a) > 0 when e 0, and IT(a) is continuous everywhere

on RP. So the infimum of h(a) on the surface of unit sphere B is

greater than zero: s = inf{Wi(a) = t e 81} > 0. Find on B a finite sub-

set G = {B, ... , } with the following property: For any a 6 B, there

exists i e {1, ... , r} such that

sup{I(C - i : j = 1, 2, } < s/4. (32)

Now we prove the existence of N such that

max xic > s/4
l<i<n

for every a e B when n > N.

In fact, by the definition of s, we can find out N such that

max x'. > 3s/4, i = 1, ... , r

l<k<n" "

when n > N. For any a e B choose ai such that (32) holds, Then we have

max x~a = max x -
l<k<n" l<k<n

max xkci - s/4 > s/2
l<k<n

r when n > N. Now put t 4a2/s. If Z e RP and IIZ - ll > t, then £ can

" -. . " - .-
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be written as Z =  - ta, a e B, t > t. So that when n > N, we get

=nj : max lyk - xZI: max lek + tkaI
l<k<n l<k<n

> t max Ix'a - max Iekl
l<k<n k <k<n

> ts/2 - a2 > a2 >Qn(8).

2This shows that {-' .N+l' "" are uniformly bounded. Since P(lim - = 8)
n

1 1 by theorem 5, the assertion of theorem 6 follows from the dominant

convergent theorem. 0

xii
2

B-'.-:.&~Kfi -X- ~ ~ .*i.~~L. ~ -...
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7. ESTIMATION OF THE ENDPOINT OF THE SUPPORT WHICH

HAS THE MAXIMUM ABSOLUTE VALUE AND SECOND MOMENT

Define an = max y

Theorem 7. Under the assumption of theorem 5, a is a strong con-•n

sistent estimate of max {fall, la 2 1}.

* Proof. Without losing generality, we suppose that IaJ < a2 .

Because lim max ei > TT en, by (23) we have P(lim max ei  a2 ) .. n-- l<i<n - 'n-)* l<i<n

Now

max lyi - Xn max lyi - x! + x'(-l<i<n 1-n<i<n 1 - l .- n)

= max Jyi --x'B + Jn = max ei + Jn
1<i<n 1<i<n

where IJin < supjxil fITn - all. Because limn 2 , a.s. and {x i }

is bounded, we derive that im Jn = 0, a.s. Combining this with

P(lim max ei  a 2 ) = 1, we get lim an = a2 , a~s.
n-w 1<i<n 1

Now suppose that eI , e2 , ... is a strictly stationary ergodic

sequence. As an estimate of Ee2 • we use s n  n - n "

Theorem 8. Suppose that {e i } is a strictly stationary ergodic se-

quence. Assume that the conditions of Theorem 5 are true. Then

= 2
lims'n = EeI, a.s.

If we substitute 8 n by B n the proof is the same as the proof of Theorem 4.
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